Received 25 April 2006

Accepted 1 June 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zheng-Dong Fang^{a,b}* and Ming-Wu Ding^b

^aDepartment of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China, and ^bKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zdfangluo@sina.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.056 wR factor = 0.153 Data-to-parameter ratio = 18.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(4-Chlorophenyl)-5-ethyl-6-methyl-2-morpholinothieno[2,3-d]pyrimidin-4(3*H*)-one

In the title compound, $C_{19}H_{20}ClN_3O_2S$, the two fused rings of the thieno[2,3-*d*]pyrimidin-4(3*H*)-one system are almost coplanar. The packing of the molecules in the crystal structure is mainly governed by intermolecular $C-H\cdots O$ hydrogenbonding and $\pi-\pi$ interactions.

Comment

The derivatives of thieno[2,3-*d*]pyrimidin-4(3*H*)-ones are of great importance because of their remarkable biological properties (Santagati *et al.*, 2002; Wang *et al.*, 2005). In recent years, we have been engaged in the preparation of derivatives of heterocycles *via* an aza-Wittig reaction (Ding *et al.*, 2004). The heterocyclic title compound, (I), may be used as a new precursor for obtaining bioactive molecules and we report its structure here (Fig. 1).

The two fused rings of the thieno[2,3-*d*]pyrimidin-4(3*H*)one system of (I) are almost coplanar, with a maximum deviation of 0.045 (2) Å for atom C9. This plane is at an angle of 119.7 (2)° to the substituted benzene ring. Bond lengths and angles (Table 1) are in agreement with reported literature values (Tashkhodzhaev *et al.*, 2002; Vasu *et al.*, 2004). The morpholine ring has a half-chair conformation.

The crystal structure of (I) is stabilized by intermolecular $C-H\cdots O$ hydrogen bonding and $\pi-\pi$ interactions (Fig. 2 and Table 2).

All rights reserved

© 2006 International Union of Crystallography

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Figure 2

A packing diagram for (I), showing the intermolecular C-H·O hydrogen-bonding interactions (dashed lines). [Symmetry codes: (a) $-x + \frac{5}{2}, y - \frac{1}{2}, z;$ (b) $-x + \frac{3}{2}, y + \frac{1}{2}, z.$]

Experimental

To a solution of ethyl 4-ethyl-5-methyl-3-carboxylate thiophene iminophosphoraneiminophosphorane (0.95 g, 2 mmol) in dry dichloromethane (15 ml) was added 4-chlorophenyl isocyanate (2 mmol) under nitrogen at room temperature. After standing for 10 h at 278 K, the solvent was removed under reduced pressure and diethyl ether-petroleum ether (1:2, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give the carbodiimide, (II), which was used directly without further purification. To a solution of (II) in dichloromethane (15 ml) was added morpholine (2 mmol). After allowing the reaction mixture to stand for 4.5 h, the solvent was removed and anhydrous ethanol (10 ml) and several drops of EtONa in EtOH were added. The mixture was stirred for 3 h at room temperature, concentrated under reduced pressure and the residue recrystallized from ethanol to give the title compound, (I) (yield 0.61 g, 80.3%; m.p. 479 K). Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Crystal data

$C_{19}H_{20}ClN_{3}O_{2}S$	Z = 8
$M_r = 389.89$	$D_x = 1.372 \text{ Mg m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 8.0455 (6) Å	$\mu = 0.33 \text{ mm}^{-1}$
b = 11.7674 (9)Å	T = 292 (2) K
c = 39.887 (3) Å	Block, colourless
V = 3776.2 (5) Å ³	$0.30 \times 0.20 \times 0.20$ mm

4490 independent reflections

 $R_{\rm int} = 0.061$

 $\theta_{\rm max} = 28.0^{\circ}$

3621 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer and a scans Absorption correction: none 22565 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 1.2775P]
$wR(F^2) = 0.153$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.002$
4490 reflections	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$
237 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.510 (3)	C10-N2	1.449 (2)
C3-C4	1.501 (3)	C13-Cl1	1.737 (2)
C5-C6	1.446 (3)	C17-O2	1.416 (3)
C7-N1	1.360 (2)	C18-H18B	0.9700
C7-S1	1.7214 (19)	C19-N3	1.459 (2)
C9-O1	1.218 (2)		
	100 5		
C2-C1-H1A	109.5	C10 - C15 - C14	119.42 (19)
C5-C2-C1	113.73 (19)	O2-C17-C16	111.45 (19)
C4-C3-H3A	109.5	O2-C18-C19	111.7 (2)
C5-C4-S1	112.66 (15)	N3-C19-H19B	110.1
C7-C6-C5	113.19 (16)	C8-N1-C7	115.40 (16)
N1-C8-N2	123.34 (16)	C19-N3-C16	111.02 (16)
C12-C13-C14	120.72 (19)	C7-S1-C4	91.55 (9)
C3-C4-C5-C6	178.2 (2)	N3-C8-N2-C9	177.51 (18)
C4-C5-C6-C7	1.3 (3)	O1-C9-N2-C8	-178.5(2)
C7-C6-C9-O1	-175.3(2)	C18-C19-N3-C8	-160.18 (19)
C11-C12-C13-Cl1	174.94 (19)	C19-C18-O2-C17	59.2 (3)
N2-C10-C15-C14	176.16 (19)	C6-C7-S1-C4	-0.28 (16)

Table 2

H	yd	lrogen-	bond	geome	try	(A,	°)).
---	----	---------	------	-------	-----	-----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11 \cdots O2^{i}$	0.93	2.51	3.240 (3)	135
$C15 - H15 \cdots O1^{ii}$	0.93	2.35	3.192 (2)	151
Symmetry codes: (i) -	$r + \frac{5}{2}v - \frac{1}{2}z$	(ii) $-r + \frac{3}{2}v + \frac{3}{2}v$	1 7	

Symmetry codes: (i) $-x + \frac{2}{2}$, $y - \frac{1}{2}$, z; (ii) $-x + \frac{2}{2}$, $y + \frac{1}{2}$, z.

All H atoms were positioned geometrically (C-H = 0.96-0.97 Å) and refined as riding, allowing for free rotation of the methyl groups; $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}$ (methyl C).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M. W., Yang, S. J. & Zhu, J. (2004). Synthesis, pp. 75-79.
- Santagati, N. A., Prezzavento, O., Bousquet, E., Ronsisvalle, G. & Spampinato, S. (2002). J. Pharm. Pharmacol. 54, 717–728.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tashkhodzhaev, B., Turgunov, K. K., Usmanova, B., Averkiev, B. B., Antipin, M. Y. & Shakhidoyatov, K. M. (2002). J. Struct. Chem. 43, 876–880.
- Vasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1239-o1240.
- Wang, Y. D., Johnson, S., Powell, D., McGinins, J. P., Miranda, M. & Rabindran, S. K. (2005). *Bioorg. Med. Chem. Lett.* 15, 3763–3766.